ÁñÁ«ÊÓƵ

Global earth observation plan takes critical step forward

<ÁñÁ«ÊÓƵ class="standfirst">
December 1, 2003

28 November 2003

Italy Hosts Second Follow Up Meeting to Earth Observation Summit

The ad hoc intergovernmental Group on Earth Observations (GEO) will hold its second meeting on November 28-29 in Baveno, Italy. The meeting aims to give direction to the continued development of a 10-year plan to implement a comprehensive, coordinated, and sustained Earth observation system or set of systems. The first meeting took place in August 2003 in Washington, DC, immediately after the first Earth Observation Summit, which established the group. In Baveno, the Group will review the first draft of the GEO Framework Document that will lead to a 10-year implementation plan to be presented at the next ministerial meeting to be held in Tokyo next spring. The Plan will direct the co-ordination of observing systems that link thousands of individual technological assets into a comprehensive Earth observation effort and provide critical information needed to address important global economic, social and scientific challenges. This information will help policy-makers around the world make more informed decisions regarding climate, the environment, and a host of other economic and social issues that are affected by Earth and climate systems.

This second GEO meeting will be co-chaired by representatives of the European Commission, retired Navy Vice Adm. Conrad C. Lautenbacher, Ph.D., Under Secretary of Commerce for Oceans and Atmosphere and NOAA Administrator, Mr. Akio Yuki, Deputy Minister of Education, Culture, Sports, Science and Technology, Japan and Dr. Rob Adam, Director General of the Department of Science and Technology, South Africa.

The first Earth Observation Summit, hosted by the United States in July 2003, marked an important milestone in the development of a comprehensive, coordinated and sustained Earth observation system(s). During the Summit, a Declaration was adopted that recognized the need to move forward in the development of these systems, reaffirmed the need for Earth systems data and information for sound decision-making, set forth principles for long-term cooperation in meeting these goals, and committed to improving Earth observation systems and scientific and technical support in developing countries.

ÁñÁ«ÊÓƵ

This Declaration also established the GEO. The GEO will pave the way for the second Earth Observation Summit in April 2004 in Japan, where the Framework Document will be adopted. The 10-year Implementation Plan will be adopted at the third Earth Observation Summit in Europe at the end of 2004.

Background

The need for developing a comprehensive, coordinated and sustained Earth Observation system or systems have been recognized among nations at the highest political levels. In September 2002, the World Summit on Sustainable Development held in Johannesburg, South Africa, called for improved cooperation and coordination among global observing systems and research programs for integrated global observations. In June 2003, the G-8 Summit held in Evian, France, called for strengthened international cooperation on global observation of the environment. In July 2003, the first Earth Observation Summit was held in Washington, DC.

ÁñÁ«ÊÓƵ

Around the globe, Earth observing systems have already demonstrated their value e.g. in estimating crop yields, monitoring water and air quality, improving airline safety, and forecasting the weather. However, gaps or "blind spots" in understanding Earth and its complex systems severely limit our knowledge of how to address many concerns relating to drought, disease outbreaks, crop forecasts, energy, and transportation. Relevant tools are required to address scientific uncertainties and improve management of the natural resources that underpin our economies.

The high cost of uncertainty

Our need for tools to predict severe weather at short notice and to monitor long-term atmospheric change has never been greater. There are powerful economic as well as environmental incentives for gaining a greater understanding of these phenomena. According to a survey by theCenter for Research on the Epidemiology of Disasters, in the last 25 years, natural disasters have affected 4.1 billion people and led to the loss of 1.3 million lives worldwide1.

For example, in Europe, the economic and social costs of unpredicted climate change is huge: France recorded 11,435 weather-related mortalities in the first 2 weeks of August 2003 alone when temperatures soared over 40¡ãC (104¡ã F); fires in Portugal this summer caused over €1 billion in damage; the bill for repairing damage in Germany following the floods of summer 2002 was about €15 billion and this year German farmers fear a loss of 80% of their crops because of the drought. In the United States, more than $3 trillion of U.S. GDP is affected by climate and weather - including the agriculture, energy, construction, travel and transportation industry sectors. In Japan, abnormally low temperatures in the summer of 2003 will cost the country an estimated $2.7 billion in lost crops. It is also well documented that inadequate Earth observation capacity is significantly constraining poverty alleviation efforts in developing countries, as many aspects of their economies are especially sensitive to climatic hazards.

To address these types of problems, significant investments have already been made in space andin-situ or surface-based observing systems. For example, the US monitors the ozone layer using spacecraft and aircraft and the TAO/TRITON Array of buoys established by U.S. and Japan have helped forecast the most recent El Ni?o six months in advance.

ÁñÁ«ÊÓƵ

Europe has invested in the ENVISAT, SPOT, METOP and Meteosat Second Generation satellites for a variety of land, ocean and atmospheric and meteorological applications. Developing countries have also increasingly been investing in strengthening especially theirin-situobservation facilities, including meteorological services. As an example, the Environment Initiative of the New Partnership for Africa's Development (NEPAD) includes an important focus on the role of Earth observation.

In addition, international organizations such as The World Meteorological Organisation (WMO) have played a leadership role in developing global observing networks. The global observing system of the WMO, World Weather Watch, collects and distributes data around the globe from over 10,000 land surface stations, 7000 ships and 16 meteorological and environmental satellites. Other monitoring systems include the Global Ocean Observing System (GOOS), Global Climate Observing System (GCOS), and the Global Terrestrial Observing System (GTOS).

These systems provide critical data. However, linking and expanding the existing systems will add considerable power to an already impressive data collection effort and provide a quantum leap in our ability to predict and manage Earth system cycles and processes. The GEO will build upon the existing efforts at integration of these and other systems begun five years ago within the Integrated Global Observing Strategy Partnership (IGOS_P).

For more information on the GEO, please visit:

For more information on the Earth Observation Summit, please visit:

ÁñÁ«ÊÓƵ

    1 &nbsp;The Centre for Research on the Epidemiology of Disasters (CRED):

    &nbsp;

DN: Date: 28/11/2003

Register to continue

Why register?

  • Registration is free and only takes a moment
  • Once registered, you can read 3 articles a month
  • Sign up for our newsletter
Register
Please Login or Register to read this article.
<ÁñÁ«ÊÓƵ class="pane-title"> Sponsored
<ÁñÁ«ÊÓƵ class="pane-title"> Featured jobs